Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling.

نویسندگان

  • He Huang
  • Qi-Zhu Tang
  • Ai-Bing Wang
  • Manyin Chen
  • Ling Yan
  • Chen Liu
  • Hong Jiang
  • Qinglin Yang
  • Zhou-Yan Bian
  • Xue Bai
  • Li-Hua Zhu
  • Lang Wang
  • Hongliang Li
چکیده

A20 or tumor necrosis factor-induced protein 3 is a negative regulator of nuclear factor kappaB signaling. A20 has been shown previously to attenuate cardiac hypertrophy in vitro and postmyocardial infarction remodeling in vivo. In the present study, we tested the hypothesis that overexpression of A20 in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human A20 expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding in A20 transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by echocardiography, as well as by pathological and molecular analyses of heart samples. Constitutive overexpression of human A20 in the murine heart attenuated the hypertrophic response and markedly reduced inflammation, apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased A20 levels in response to hypertrophic stimuli. Western blot experiments further showed A20 expression markedly blocked transforming growth factor-beta-activated kinase 1-dependent c-Jun N-terminal kinase/p38 signaling cascade but with no difference in either extracellular signal-regulated kinase 1/2 or AKT activation in vivo and in vitro. In cultured neonatal rat cardiac myocytes, [3H]proline incorporation and Western blot assays revealed that A20 expression suppressed transforming growth factor-beta-induced collagen synthesis and transforming growth factor-beta-activated kinase 1-dependent Smad 2/3/4 activation. In conclusion, A20 improves cardiac functions and inhibits cardiac hypertrophy, inflammation, apoptosis, and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Suppressor A20 Protects Against Cardiac Hypertrophy and Fibrosis by Blocking Transforming Growth Factor- –Activated Kinase 1–Dependent Signaling

A20 or tumor necrosis factor–induced protein 3 is a negative regulator of nuclear factor B signaling. A20 has been shown previously to attenuate cardiac hypertrophy in vitro and postmyocardial infarction remodeling in vivo. In the present study, we tested the hypothesis that overexpression of A20 in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive ...

متن کامل

Novel Protective Role for Ubiquitin-Specific Protease 18 in Pathological Cardiac Remodeling.

Ubiquitin-specific protease 18 (USP18), a USP family member, is involved in antiviral activity and cancer inhibition. Although USP18 is expressed in heart, the role of USP18 in the heart and in cardiac diseases remains unknown. Here, we show that USP18 expression is elevated in both human dilated hearts and hypertrophic murine models. Cardiomyocyte-specific overexpression of USP18 in mice signi...

متن کامل

Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction.

BACKGROUND A20 was originally characterized as a tumor necrosis factor-inducible gene in human umbilical vein endothelial cells. As an inhibitor of nuclear factor-kappaB signaling, A20 protects against apoptosis, inflammation, and cardiac hypertrophy. In the present study, we tested the hypothesis that cardiac-specific overexpression of A20 could protect the heart from myocardial infarction. ...

متن کامل

Evidence for the importance of adiponectin in the cardioprotective effects of pioglitazone.

The favorable effects of the peroxisome proliferator-activated receptor-gamma ligand pioglitazone on glucose metabolism are associated with an increase in the fat-derived hormone adiponectin in the bloodstream. A recent clinical trial, Prospective Pioglitazone Clinical Trial in Macrovascular Events, demonstrated that pioglitazone improved cardiovascular outcomes in patients with type 2 diabetes...

متن کامل

Myostatin regulates energy homeostasis in the heart and prevents heart failure.

RATIONALE Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. OBJECTIVE Here, we aimed to decipher the role of myostatin and myostatin-dependent si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 2010